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Abstract—Recently, the SINR-model has been widely utilized
in link scheduling, spectrum allocation and other applications.
The SINR model requires the receiving power information
of all potential link peers, which is usually assumed to be
known as priori or following a uniform propagation model. We
have performed experiments to illustrate how real power data
could improve the performance of the SINR-based applications
with considerable margin. Thus, obtaining the real power data
through measurements is promising. However, this method faces
many challenges. We propose a pathloss model based solution,
including a representative link selection method to cut down the
measurement pairs; accuracy control to determine the sample
size; and a measurement distribution method to shorten the
measurement duration. Our experiments show that our solution
significantly improves the SINR-based scheduling’s performance.

Index Terms—SINR estimation, throughput optimization,
pathloss model, centralized algorithm, spectrum assignment.

I. INTRODUCTION

Recent years have witnessed the booming of wireless
networking, and the emergence of new wireless network
paradigms like Cognitive Radio Networks (CRNs) and Wire-
less Mesh Networks (WMNs). These networks provide the
user with higher access speeds and better wireless resource
utilization.

WMNs are considered to be a promising solution for the
support of low-cost broadband Internet access for large areas
[1]. A WMN consists of mesh clients and mesh routers. Mesh
routers form the backbone of the network to provide network
access for mesh clients. Some of them are gateways that are
directly connected with the Internet via high-capacity cables.
To efficiently deliver a high volume of traffic between the
Internet and those non-gateway mesh routers over wireless
channels, the limited bandwidth needs to be fairly allocated to
them.

Cognitive radios are desirable for a WMN in which a
large volume of traffic is expected to be delivered since they
are able to utilize available spectrums more efficiently, thus
significantly improving the network capacity [2]. However,
they introduce additional complexities to bandwidth allocation.
In a traditional 802.11-based WMN, a set of homogeneous
channels are always available to every mesh router. Mean-
while, in a WMN with cognitive radios, each node can access

a large number of spectrum bands (channels), which may
spread over a wide range of frequencies. Different channels
can support quite different transmission ranges and data rates,
which will have a significant impact on route and channel
selections.

Although CR technology provides a wide spectrum, the
spectrum utilization could be further enhanced by spatial
and temporal reuse. Thus, spectrum allocation that is subject
to interference has been constantly drawing the attention of
researchers. Recently, due to the accurate modeling of accu-
mulative effect of interference, the SINR interference model,
rather than the protocol model, is preferred. The accumulative
effect implies that a transmission could fail due to a far away
simultaneous transmission. With the SINR of each of the send-
ing and receiving peers known for all the possible concurrency
scenario, perfect scheduling and spectrum allocation will be
available [3]–[6].

However, most of the SINR-based link scheduling and
spectrum allocation algorithm assumes that either the receiving
power is known as a priori, or the signal propagation follows
the distance exponential attenuation model, based on which,
receiving power could be directly derived by the formula
containing the sending power data and the distance between
nodes. Though it is typically assumed in analysis and design
problems that the Path Loss Exponent (PLE) is known as a
priori, it is often not the case. In this paper, we argue that this
assumption and model could highly degrade the scheduling
and assignment algorithms’s performance.

To illustrate our motivation, we perform an experiment on
real data. Throughput optimization algorithms based on the
SINR model are conducted using both propagation model
and real power information. A CDF result is shown in Fig.
1, which illustrates that there is a big margin between the
line of the propagation model and the line with the power
information. The results of average throughput also give out
a 24% performance gap. Based on above results, we believe
that there is a great opportunity to further enhance the network
performance by accurately estimating the SINR value of each
node under a certain transmitting mode.

This degradation is mainly caused by the power propagation
model which is only applicable in long-distance signal propa-
gation. Also, the PLE will be different when the environment



Fig. 1. The effect of applying the real power information versus using the
propagation model based on distance and a uniform PLE

changes. As a result, we intuitively use measurements to get
better results. However, the measurement method will face the
following challenges:
• Due to shadow fading, signal power measurements will

be diversified even between different measure slots of a
single link.

• Just like the communication in wireless networks, we also
have to make sure each measurement would not conflict
with others.

• In CRN, the available spectrum spans over a large range,
which introduces the spectrum diversity. In our problem,
spectrum diversity means that the same signal in different
bands propagate differently. Thus, our method must take
this feature into consideration. But, it is also too costly
to measure for every peer in every available band.

Regarding these challenges, a highly efficient and reliable
SINR estimating method with accuracy control and cost con-
trol is required. Our contributions could be summarized as:
• A pathloss model-based parameter estimation method, in-

cluding representative link selection and crossband power
estimation.

• We introduced an accuracy control method which ex-
plores and guides the tradeoff between accuracy and
measurement cost.

• We also defined the measurement optimization problem
considering different targets. These problems are modeled
as integer optimization problems, thus could be solved
approximately.

The rest of this paper is organized as follows: in Section
II, we introduce related papers. The system model and define
our problems are presented in Section III. The signal propa-
gation model based estimation and measurement methods are
proposed in IV. The accuracy control method is introduced
in Section V. The measurement distribution problems and
its solution are proposed in Section VI. Section VII is the
statement of our experiment methods and results. Finally, we
conclude this paper in Section VIII.

II. RELATED WORK

A. SINR-based Network Optimization

The SINR model is widely regarded as a better model
for interference characterization. Although such a model is
preferred, there are many difficulties in carrying out analyses
with this model due to the computational complexity SINR
involves. As a result, many previous efforts were done on
single-hop networks, e.g., [3], [4]. For multi-hop networks,
some efforts study cross-layer problems involving two layers
instead of three layers (physical, link and network). For exam-
ple, in [5], Bhatia and Kodialam optimized power control and
routing, but assumed some frequency hopping mechanism is in
place for scheduling, which helps simplify joint consideration
of scheduling. For cross-layer optimization in the SINR model,
nearly all existing efforts (e.g., [7]) followed a layer-decoupled
approach to simplify analysis. Under such an approach, the so-
lution is obtained by determining an algorithm/mechanism for
one layer at a time and then piecing up them together instead
of solving a joint optimization problem. Due to decoupling in
the solution procedure, these approaches are heuristic at best
and cannot offer any performance guarantee. Different from
these works, we provide a performance-guaranteed, centralized
solution along with a fast localized solution.

When compared to the traditional wireless networks, chan-
nel assignments in CRNs have to deal with the different
scope of spectrum availability. Thus, various distributed ap-
proximations were proposed, which are based on observing
local interference patterns [8], local bargaining [9] or on
coordinations between CR nodes that aim at maximizing some
system utility [10], [11].

B. Signal Fading and Pathloss Models

In most of the prior literature on PLE estimation algorithms,
authors have assumed a simplified channel model consisting
only of a large-scale path loss component and a shadowing
counterpart; therefore, their methods have focused mainly on
RSS (receive signal strength)-based localization techniques.
We are, however, not aware of any related work that has
considered fading, and most importantly, interference in the
system model. Estimation based on a known internode dis-
tance probability distribution is discussed in [12]. The authors
assume that the distance distribution between two neighboring
nodes, i and j, is known or can be determined easily.

In [13], the authors consider a network where the path loss
between a few low-cost sensors is measured and stored for
future use. They propose an algorithm that employs interpola-
tion techniques to estimate the path loss between a sensor and
any arbitrary point in the network. In [14], a PLE estimator,
based on the method of least squares, is discussed and used
in the design of an efficient handover algorithm. However,
as described earlier, the situation is completely different when
interference and fading are considered and we cannot use these
purely RSS-based estimators. Regarding the accuracy control
method, in [15], the author provide a framework to control the
accuracy for the measure of SINR-PRR relation.



Our work draw the lessons from these researches and work
on the topic of the SINR estimation to assist the scheduling
and spectrum allocation. To the best of our knowledge, this
paper is the first try to solve this problem.

III. PRELIMINARIES

We first describe the system model and the assumptions
in this section. Then, the problem we study in this paper is
defined.

A. System Model

1) Network Model: We consider a wireless mesh network
with a set of CR mesh routers N . Each node i ∈ N , senses
its environment and finds a set of available spectrum bands
Mi, for the given time instance (i.e., those bands that are
currently not being used by primary users), which may not
be the same as the available spectrum bands at other nodes.
Without the loss of generality, we assume that the bandwidth
of each spectrum band (channel) is W . DenoteM as the union
of all spectrum bands among all of the nodes in the network,
i.e., M =

⋃
i∈NMi, and each band is identically denoted as

m. We also denote Mij = Mi

⋂
Mj , which is the set of

common bands between nodes i and j.
2) SINR Model: Let P denote the transmitting power and

dij be the distance between the transmitter i and j. Let pmij
denote the received power level at node j from node i in band
m; this quantity is a random variable due to wireless fading.
An implicit practical assumption throughout is that pi > Rth,
where Rth is a positive constant for the minimum power level
required to receive a signal.

In SINR model, concurrent transmissions are allowed and
interference (due to transmissions by non-intended transmit-
ters) is treated as noise. A transmission is successful if and
only if the SINR at the receiver is greater than or equal to a
threshold.

smij =
pmij

N0 +
∑
k∈N ,k 6=i p

m
kj

. (1)

Here, N0 is the ambient Gaussian noise density.
3) Signal Propagation Models: To better understand the

signal propagation characteristics, we introduce the most cru-
cial propagation model here.

There are many commonly used signal propagation models,
namely, the path loss law of “large-scale effects”, shadow
fading of log-normal distribution and Rayleigh fading which
models the multipath effect. Since we are concerned with an
average signal power level, we do not consider short-term
fading, which is used primarily for analyses at the data-bit
level (e.g. Rayleigh and log-normal fading). Thus, to assist
our model-driven efficient measurement, we choose path loss
model.

Generally, the pathloss model could be depicted as signal
strength attenuating with distance d as dγ , which is:

S ∝ (
d

d0
)−γ , (2)

TABLE I
SIMULATION SETTINGS

Environment Path Loss Exponent
Free Space 2

In building Line of Sight 1.6 to 1.8
Urban Cellular Radio 2.7 to 3.5

Obstructed in Building 4 to 6

where S is the signal strength; d0 is the reference signal
strength; and γ is the PLE. The empirical value of the PLE in
different environments is shown in Table III-A3.

Let p0 be the received power level at distance d0. The
received power at node j at distance dij from the transmitter
i is then given as:

pij = p0 + 10γlog(
dij
d0

) (3)

A main feature of the large-scale path loss law is its omit of
power variance. This model is also featured as deterministic
model.

The reason why we apply the pathloss model to assist the
measurement is mainly due to following reasons:

• First, the pathloss model is useful. It reveals the implicit
correlation between different link pairs. As we know
that, in the pathloss model, PLE is certain for one plain
environment. We could try to find the links that share the
same or a close PLE.

• Second, the pathloss model is simple. In its most simple
form, it is a linear function (as in equation 3). Thus, it is
quit convenient for us to utilize this model and perform
accuracy control on it.

To some extent, we do not treat the path loss model in our
work as its original means, because we assume the PLE is
different from link to link.

B. Assumptions

To make our problem tractable and ease our solution design
and analysis, we make the following assumptions:

1) We assume that the system operates synchronously in
a time-slotted mode, so that each received signal and
received packets will be fully overlapped. This will ease
the analysis hereafter.

2) We also assume the power additive feature. This means
when node i receives the signal from node j in power
of pji, while the signal from k is pki. Then when node j
and k send packets simultaneously to i, the power level
would be pji + pki.

3) We assume that the position of each node is known,
so that the path loss model relying on the distance the
signal traveled could be utilized.

4) The interference and noise from other networks are
assumed to be known, thus each node could distinguish
the measurement signal from others.



C. Problem Definition and Basic Ideas
Basically, we want to get pmij , in each node pair ij, in each

of its available band m. There are two fundamentally opposite
solutions to this problem. Firstly, as was applied in most of
the previous algorithms, we utilize the multiple propagation
models and measurements to characterize the spectrum.

On the other hand, a solution could be sequentially broad-
cast in every node, one band per time-slot, so that each node
will measure the received power and record it.

However, the former solution suffered from inaccurate esti-
mation, while the latter solution is too costly, especially when
applied in CRNs where the available spectrum is much wider.
Also, this solution has to be worked out in a fully coordinated
network.

Our basic ideas are:
• To make the estimation more accurate, we try to estimate

the signal propagation characteristic in every possible
transmission link. The path loss model will be utilized to
assist with this estimation. Because, this model reveals
the signal propagation correlation of each link. Several
“representatives” could be selected to perform measure-
ment, thus cutting the measurement cost.

• The measurement overhead could be further degraded
by selecting a representative band in each link. The
propagation characteristic in other bands could be derived
from the measured band.

• Careful scheduling of the measurement could fully utilize
the spatial and temporal diversity and save the measure-
ment cost in terms of time.

After combing the above three ideas, we thus develop an
efficient SINR estimation solution in a large scale CRN. The
details are presented in the following sections.

IV. MODEL-BASED ESTIMATION

In this section, we introduce how to utilize the pathloss
model to assist with our estimation and to depress measure-
ment overhead. After this, we present how to use the cross
band model to select representative band.

A. Pathloss Model-based Estimation
We use the Maximum Likelihood method to utilize the

measured data and derive the corresponding γ, which is the
PLE estimation problem.

The PLE estimation problem is essentially tackled by
equating the empirically (observed) measured values of the
aforementioned network characteristics to the theoretically
established ones to obtain γ̂. In each time slot, nodes either
transmit or listen to recorded measurements. Upon obtaining
the required measurement values over several time slots, the
estimation process can be performed at each node in the
network in a distributed fashion.
• Record the values of the received powers R1, R2,
R3.....RN .Then, take the signal power Si, 1 ≤ i ≤ N , to
be N independent realizations of an exponential random
variable with unit mean.

• Use regression with the MSE rate to estimate γ.

B. Selection of representative Links

The objective of choosing the representative links is such
that we can achieve the desired accuracy while a performing
measurement in the minimum number of links. The modeling
accuracy can be characterized by MSE in linear regression.
Thus the goal is to choose the minimum number of represen-
tative links to satisfy the maximum tolerable MSE. Given that
certain links may share the same or close PLE (γ), we perform
the clustering method to identify the representative links. To
identify the representative links, we need to

1) First, take a small number of measurements for each
link;

2) Second, use the method introduced in last sub-section
to estimate the γ for each link;

3) Then, use the predetermined k to divide the links into
k groups with close γ;

4) Use the k-means clustering algorithm [16] to further
divide the group;

5) Select the link with closest γ to the group mean γ;
Note that, here we use the k-means algorithm to perform

clustering, where k is the group number. Thus we can easily
control the number of representative links.

Once the representative links have been identified, they will
be used to perform further accurate measurement until the
accuracy of the model exceeds the required bound due to the
temporal variation.

C. Crossband Signal Propagation Estimation

To make use of the measurements in different frequencies,
we study how to extend the result in one channel to other
channels.

In free space, the received power at a distance d from a
point source could be modeled [17]:

PL(d) = 10log10f
2
c + 10ηlog10d+ Lf (n)− 28 (4)

where fc is the carrier frequency, η is the path loss coefficient,
Lf (n) is the additional loss due to the number of floors n,
between the transmitter and receiver. Thus, there is an f2

c

dependence of the pathloss on the frequency. Some recent
studies have also shown that the frequency dependence is
larger than a square law in some cases, however for this paper
we will assume an f2

c dependence which we believe to be
largely true.

Suppose Pr(f1) is the received power at n2 when the
transmission happens using carrier frequency f1, and similarly
Pr(f2) is defined. Using Equation 2, it can be easily shown
that:

Pr(f1)− Pr(f2) = 20log(
f2

f1
). (5)

Without loss of generality, assume f1 < f2. The equation
shows that if either Pr(f1) or Pr(f2) is known, the other can
be inferred. From this equation we can see that a measurement
on one band could derive the power propagation characteristic
of another band of the same link.



V. ACCURACY CONTROL

For measurements in each link peer, we further develop
an accuracy control method to explore the tradeoff between
measurement accuracy and overhead. In this section, we
present our measurement control method.

Our accuracy control method is consisting of the control
of two part: first is the control of number of representative
links and the number of band pick to take measurement in
each representative link. Regarding these two parameters, we
will show a guidance with the experimental result in section
VII; the second part is the control of the sample size in each
selected band of representative links. As we have mentioned,
the receiving power could be diverse due to shadow fading,
multiple samples should be taken to ensure more accurate
regression. In this section, we mainly discuss the accuracy
control with the sample size.

Given a selected set of representative links, the overall accu-
racy can be ensured by controlling the measurement accuracy
corresponding to the representative links and by controlling the
sample size. For each representative links lij , we first compute
the minimum number of signal power samples, denoted by
mlij , that we need to ensure the measurement accuracy; then
we compute the minimum number of signal power samples,
denoted by nmn , that we need for each representative link to
ensure the required prediction accuracy for the signal powers
corresponding to secondary links lmn (links that exclude repre-
sentative links); finally, we compute the number of samples for
a representative links lij as max{mij , nmn}. In what follows,
we elaborate on our method of sample size computation for
ensuring the required measurement accuracy and prediction
accuracy.

Assume that we need to control the measurement error to
be within β% of the mean at the 100(1 − α)% confidence
level for a representative link lij , the measured mean signal
power is p̄ij , and the minimum number of samples to ensure
the required accuracy is mij .

Given a set of mij samples on link lij , the 100(1 − α)%
confidence interval for the mean signal power is

p̄ij ∓ z1−α/2

√
p̄ij(1− p̄ij)

mij
(6)

where z1−α/2 is the (1−α/2)-quantile of the standard normal
variate. To satisfy the required accuracy, the following should
hold

z1−α/2

√
p̄ij(1− p̄ij)

m
≤ p̄ij

β

100
(7)

From it, we have the following equation:

mij ≥
10000z2

1−α/2p̄ij(1− p̄ij)
β2

(8)

Therefore,
10000z21−α/2p̄ij(1−p̄ij)

β2 samples of packet transmis-
sion status is enough to ensure the required accuracy of
(100− β)% for the link lij .

Given nij pairs of measurement data on link lij , we
can drive the regression model p′ij = p0 + γ̂log(dij/d0)

with the corresponding standard deviation of errors se =√
sum−of−squre

n−1 . Here, p0, d0 are all predefined constant.
When predicting pmn for a secondary link lmn, the estimating
value of the predicted ˆpmn is:

ˆpmn = p0 + γ̂log(
dmn
d0

). (9)

Assume xmn = log(dmn/d0), and xmn ∈ Cij , where Cij is
the cluster with cluster head of link lij . The standard deviation
of pmn is:

s ˆpmn = se[
1

n
+

(xmn − x̄)2∑
x∈Cij x

2 − nx̄2
]1/2 (10)

where x̄ =

∑
x∈Cij

x

|Cij | . Then the 100(1 − α)% confidence in-
terval for p′mn is ˆp′mn∓ s ˆp′mn

t[1−α/2,n−2], where t[1−α/2,n−2]

is the (1− α/2)-quantile of a t-variate with n− 2 degrees of
freedom. Assume that the prediction error is required to be
within ϕ% of the mean value at the 100(1− α)% confidence
level, then the following should hold:

s ˆp′mn
t[1−α/2,n−2] ≤ ˆp′mn

ϕ

100
(11)

Then, we have the following on the required sample size n:

nij ≥
2xmn

∑
x∈Cij x− Y (

∑
x∈Cij x)2 −

∑
x∈Cij x

2

x2
j − Y

∑
x∈Cij x

2
, (12)

where Y =
ˆp′mnϕ

2

10000s2et
2
[1−α/2,n−2]

. Let

nxmn =
2xmn

∑
x∈Cij x− Y (

∑
x∈Cij x)2 −

∑
x∈Cij x

2

x2
mn − Y

∑
x∈Cij x

2
.

(13)
Then the minimum required sample size:

nmn = max
x∈Cij

nx (14)

VI. MEASUREMENT DISTRIBUTION

After presenting the model based and accuracy control, in
this section, we answer the following question: could we use as
few time as possible by carefully scheduling and distributing
the measurements in the network.

The opportunity that we can take advantage of is using the
simultaneous transmitting and receiving in different channels.
The transmission is fully scheduled because the receiving node
could only identify the source of broadcasting if they know
the schedule.

We consider two kinds of measurement distribution meth-
ods, which are accuracy-constraint and time-constraint, respec-
tively.

A. Accuracy-Constraint Method

The accuracy-constraint method requires predetermined rep-
resentative links and the sample size on them. They are
determined by the methods we mentioned in the previous two
sections. Here, we use a vector {aij} to represent the results,



where aij is the calculated sample size in link lij and aij = 0
if lij is not selected as the representative link.

Thus we define the minimum cost, accuracy constraint
measurement problem as:

Definition 1: Minimum Cost, Accuracy Constraint Mea-
surement Problem: Given a network N with n nodes, each
node has its own admissible band Mi. The requirement of
successful measurements is defined in {aij}. Find the schedule
with earliest end time T .

Assume that xmi,t = 1 denote node i will perform a broadcast
in channel m, while xmi,t = 0. Then the maximal measurement
problem could be formally defined as following optimization
problem.

Min T

s.t.
∑

m∈Mij ,t≤T

(xmi,t − xmi,txmj,t) = aij ,∀i, j ∈ N (15)

∑
m∈Mi

xmi,t = 1,∀i ∈ N , t ≤ T (16)

In our design, a successful measurement is the situation that
node i broadcasts in band m while node j does not. Thus,
in the formal definition, equation (15) shows that the total
successful transmissions in one link is equal to the calculated
measurement frequency.

Equation (16) shows that in each link we only need to select
one spectrum to perform measurement, the others could be
derived by the method mentioned in section IV-C. In fact, this
constraint could be relaxed by changing the right part to a
variable that denotes the spectrum number selected in each link
to perform measurement. Usually, more spectrums mean more
accuracy in deriving the signal propagation characteristic.

B. Time-Constraint Method

In some situations, the time requirement is more urgent
than the accuracy requirement. Usually, we want our model
as accurate as possible under a time constraint. Intuitively,
we want as many collected measurements as possible. On the
other hand, as the minimum estimation unit is link pairs, it is
trivial that we should let the measurements be fairly distributed
among all selected link pairs. Thus, we have to study the
following problems.

Definition 2: Fair Measurement Problem: Given a net-
work N with n nodes, each node has its own admissible band
Mi and a time constraint T . The selected representative links
are denoted by {aij}, where aij = 1 if link lij is selected
and 0 otherwise. Find the schedule such that the minimum
measurements of a certain link will be maximized.

This problem could be formally defined as:

Max F

s.t. F =
∑

m∈Mi,t≤T

xi,t +
∑

m∈Mj ,t≤T

xj,t

−
∑

i,j∈N ,m∈Mij ,t≤T

xmi,tx
m
j,t (17)

∑
m∈Mij ,t≤T

(xmi,t − xmi,txmj,t) = aij ,∀i, j ∈ N (18)

∑
m∈Mi

xmi,t = 1,∀i ∈ N , t ≤ T (19)

Both problems above are integer convex optimization prob-
lems. We can solve them approximately by relaxing the
variable to a non-integer one, then rounding the result to get
an integer result. The standard convex optimization procedure
will not be mentioned here.

C. Summary

In summary of the aforementioned components, our solution
should perform in these steps:

1) Each node collects its admissible channel information
and sends to the central server.

2) On receiving all of the admissible channel information,
the server first performs a schedule for all link peers to
perform one successful measurement. The collected data
is used to select the representative links along with the
sample sizes in each link.

3) The central server will start to solve the optimization
problem (in last section) according to user requirement.

4) Each node conducts broadcasting and measurement ac-
cording to the predefined schedule. After grasping the
measurement data, each node sends them to the central
server.

5) The server uses the collected data to estimate PLE for
each link and predict the receiving power. The SINR for
each link are computed based on the predicted power
data.

VII. EVALUATION

We experimentally analyse the performance of our solution.
In this section, we first present the experimental methodology
and simulation settings; then we discuss the experimental
results.

A. Simulation Targets

Our work mainly consists of three parts, which are, the
model-based power estimation, the accuracy control and the
measurement distribution. We designed the experiments to
examine these three parts. Our simulation targets could be
summarized as:
• The performance of the whole solution in terms of

throughput improvement for the SINR-based throughput
optimization algorithms.
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• The performance of the cross-band power propagation
model should be measured in terms of how does it affect
the SINR-based throughput optimization algorithms.

• The accuracy control method should be examined in
terms of accuracy and overhead.

• The performance of measurement distribution should be
examined in terms of average measurement time reduc-
tion.

We will design our experiments according to the above
targets.

B. Simulation Settings

Our simulations are based on the data collected from Our
simulations are based on the data collected from SWIM
platform [18]. It is consisting of 10 nodes which is capable
of running in 802.11a/b/g mode. We collect the data of the
RSSI of the beacons from each AP. Generally, we activate
one node at a time, while each AP will tune to 11 different
channels sequentially. Then, we walk to 25 different locations
(including the locations of 10 AP), to collect the 50 different
beacon messages from one AP in each channel. The RSSI
(Receiving Signal Strength Index), AP ID, channel ID will
be recorded. In our experiment, we treat measured points as
virtual APs, and use the signal strength in each beacon as the
signal or interference power.

Next, we generate experimental scenarios from this data
set. Generally, we extract network scenarios in this way: Our
experimental scenarios are consisting of 5, 10, 15, 20 different
nodes with the receiving power between them. We also set the

total operating spectrum to approximately 2.4GHz, with 11
channels of 20MHz, which is the general settings in IEEE
802.11g. The available channels in each node are constrained
by the PU nodes. We randomly deploy a certain number of
the PU nodes with assigned working channels. All the nodes
within the communication range of the PU could not share
the same channels. We generate 200 scenarios to perform a
statistical performance comparison evaluation. The throughput
of the whole network are computed using the algorithm in [6].

There are two parameters in our solution. The first is k
which is the number representative links. It is related to the
total link number. In order to make a fair comparison while
our solution applied to different scenarios, we change this
parameter into k′ = k/|N |, which is the ratio of representative
links. Another parameter is the number of channel pick to
perform measurement in each link, denote as u.

C. Simulation Results

1) Performance of whole solution: First, we measure the
enhancement of the link scheduling and optimization algo-
rithms brings by our solution. We conduct the algorithm in
[6] with different SINR estimation methods upon all our
generated scenarios. The comparison result of throughput CDF
is shown in Fig. 2. In this graph, the link “AveragePower” is
the result upon the SINR computed from our collected real-
power data without prediction. Thus this link could serve as
the optimal result. The line “Uniform-PLE” is the one with
power predicted with pathloss model with uniform PLE value
throughout the network. Meanwhile, line “Hetro-PLE” is the



one with heterogeneous PLE value from link to link. Thus, this
line could serve as the optimal result that could be achieved
by pathloss model. The result of our solution is the one with
mark of “Ensemble”. This is performed with k′ = 1/4, u = 3.
We can see that our solution is very close to the optimal result
with pathloss model. The numerical result show that it could
achieve 94% of that under “Hetro-PLE” in average.

2) Performance of accuracy control: We also want to know
how does the parameter k′ and u affect our algorithm and the
most proper value of them. Same as the examine of whole
solution, we also use the throughput metric to examine the
parameters. Their results are shown in Fig. 3(with u = 2)
and Fig. 4(with k′ = 1/5). These two parameters are linearly
related to the measurement cost. We can see from these
two figure that the increase of k′ and u will increase the
performance of our solution, while the link with k′ = 1/4
and u = 3 are close enough to the optimal link.

The prediction MSE with the change of k′ are shown in
Fig. 5. The MSE quantities the error, when the regression
model generated from representative links is used to predict
the receiving power of the secondary links. We see that a small
number of k′ is enough to ensure small MSE.

Fig. 6 shows the CDF of average measurement errors of
the representative points of all models of 16 nodes. It can
be seen that the requirement of number of measurement
samples is small. For instance, the average error is less than
9even with a sample size of 10. As the number of samples
collected increases, the measurement error further decreases.
For instance, with 20 samples, the error is usually less than
5%. From this, we see that accuracy-aware adaptive sampling
can save significant sampling overhead since it only takes very
few samples in general.

3) Performance of Measurement Distribution: Measure-
ment distribution could help us schedule the measurement thus
significantly reduce the cost. We measure the cost in terms of
time slots. The cost is examined in scenarios with 5, 10, 15,
20 nodes, respectively. The results are shown in Fig. 7. The
Y-dimension is the normalized measure of cost which is the
measurement time slots over the total measurement frequency.
This figure illustrates that the rate of cost reduction through
measurement distribution scale up with the increase of network
size. For instance, the measurement time could be saved as
much as 90% when the networks consists of 20 nodes.

We can see that our solution could significantly reduce the
measurement cost with tiny gap compare to the optimal result.

VIII. CONCLUSION

The SINR model, which is widely applied in scheduling and
spectrum allocation, requires the power information of all the
potential link peers. This information is usually assumed to
be known as priori or following a uniform propagation model.
Experiments show that real power data could improve the
performance of the SINR-based applications with considerable
margin. However, this method faces many challenges. We
propose a pathloss model based solution, including a repre-
sentative link selection method to cut down the measurement

pairs; accuracy control to determine the sample size; and a
measurement distribution method to shorten the measurement
duration. Our experiments show that our solution significantly
improves the SINR-based scheduling’s performance.
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